Answer:
a) Proceeds $83,050,438.56
b) discount amortization(first payment)
83,050,438.56 x 0.05 = 4,152,521.93
- 90,000,000 x 0.04 = 3,600,000
amortization 552,512.93
ending carrying value
83,050,438.56 + 552,512.93 = 83,602,96
c) discount amortization(second payment)
83,602,96 x 0.05 = 4,180,148.02
less cash outlay of 3,600,000
amortization 580,148.02
d) total interest expense for the first year
4,152,521.93 June + 4,180,148.02 Dec = 8,332,669.95
Explanation:
We solve for the present value of the bond by discount the coupon payment and maturity at the market rate:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 3,600,000.000
time 10
rate 0.05
[tex]3600000 \times \frac{1-(1+0.05)^{-10} }{0.05} = PV\\[/tex]
PV $27,798,245.7451
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 90,000,000.00
time 10.00
rate 0.05
[tex]\frac{90000000}{(1 + 0.05)^{10} } = PV[/tex]
PV 55,252,192.82
PV c $27,798,245.7451
PV m $55,252,192.8187
Total $83,050,438.5637