magine an astronaut on an extrasolar planet, standing on a sheer cliff 50.0 m high. She is so happy to be on a different planet, she throws a rock straight upward with an initial velocity of 20 m/s. If the astronaut were instead on Earth, and threw a ball in the same way while standing on a 50.0 m high cliff, what would be the time difference (in s) for the rock to hit the ground below the cliff in each case

Respuesta :

Answer:

[tex]\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'} } )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g} } )[/tex]

Explanation:

Given:

height above which the rock is thrown up, [tex]\Delta h=50\ m[/tex]

initial velocity of projection, [tex]u=20\ m.s^{-1}[/tex]

let the gravity on the other planet be g'

The time taken by the rock to reach the top height on the exoplanet:

[tex]v=u+g'.t'[/tex]

where:

[tex]v=[/tex] final velocity at the top height = 0 [tex]m.s^{-1}[/tex]

[tex]0=20-g'.t'[/tex] (-ve sign to indicate that acceleration acts opposite to the velocity)

[tex]t'=\frac{20}{g'}\ s[/tex]

The time taken by the rock to reach the top height on the earth:

[tex]v=u+g.t[/tex]

[tex]0=20-g.t[/tex]

[tex]t=\frac{20}{g} \ s[/tex]

Height reached by the rock above the point of throwing on the exoplanet:

[tex]v^2=u^2+2g'.h'[/tex]

where:

[tex]v=[/tex] final velocity at the top height = 0 [tex]m.s^{-1}[/tex]

[tex]0^2=20^2-2\times g'.h'[/tex]

[tex]h'=\frac{200}{g'}\ m[/tex]

Height reached by the rock above the point of throwing on the earth:

[tex]v^2=u^2+2g.h[/tex]

[tex]0^2=20^2-2g.h[/tex]

[tex]h=\frac{200}{g}\ m[/tex]

The time taken by the rock to fall from the highest point to the ground on the exoplanet:

[tex](50+h')=u.t_f'+\frac{1}{2} g'.t_f'^2[/tex] (during falling it falls below the cliff)

here:

[tex]u=[/tex] initial velocity= 0 [tex]m.s^{-1}[/tex]

[tex]\frac{200}{g'}+50 =0+\frac{1}{2} g'.t_f'^2[/tex]

[tex]t_f'^2=\frac{400}{g'^2}+\frac{100}{g'}[/tex]

[tex]t_f'=\sqrt{\frac{400}{g'^2}+\frac{100}{g'} }[/tex]

Similarly on earth:

[tex]t_f=\sqrt{\frac{400}{g^2}+\frac{100}{g} }[/tex]

Now the required time difference:

[tex]\Delta t=(t'+t_f')-(t+t_f)[/tex]

[tex]\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'} } )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g} } )[/tex]