Respuesta :

Answer:

[tex] - 40 \sqrt{x} [/tex]

Step-by-step explanation:

We want to simplify:

[tex] \sqrt{5} \times - 4 \sqrt{20x} [/tex]

We rewrite the radicand using prime factorization:

[tex] \sqrt{5} \times - 4 \sqrt{4 \times 5x} [/tex]

This gives us

[tex]\sqrt{5} \times - 4 \sqrt{4} \times \sqrt{5} \times \sqrt{x} [/tex]

Create perfect squares and simplify:

[tex](\sqrt{5} )^{2} \times - 4 \sqrt{4} \times \sqrt{x} [/tex]

[tex]5 \times - 4(2) \sqrt{x} [/tex]

[tex]5 \times - 8 \sqrt{x} = - 40 \sqrt{x} [/tex]