-4(3x + 6) is not equivalent to other expressions
Solution:
Let us use the distributive property to get the equivalent expression
Distributive property is represented as:
a(b + c) = ab + ac
[tex]-6(2x - 4) = (-6 \times 2x) + (-6 \times -4) = -12x + 24[/tex]
Using distributive property,
[tex]-(12x - 6) + 18 = -12x + 6 + 18 = -12x + 24[/tex]
Solve the expression using distributive property
[tex]-3(4x-3) + 15 = ((-3 \times 4x)+(-3 \times -3)) \\\\-3(4x-3) + 15= -12x + 9 + 15 \\\\-3(4x-3) + 15=-12x + 24[/tex]
[tex]-4(3x + 6)= -4 \times 3x + -4 \times 6\\\\-4(3x + 6)= -12x -24[/tex]
Thus fourth expression is not equivalent to other expressions