contestada

Which expression is not equivalent to the other expressions?
-6(2x -4)
-(12x -6) +18
-3(4x -3) +15
-4(3x +6)

Respuesta :

-4(3x + 6) is not equivalent to other expressions

Solution:

Let us use the distributive property to get the equivalent expression

Distributive property is represented as:

a(b + c) = ab + ac

First expression:

[tex]-6(2x - 4) = (-6 \times 2x) + (-6 \times -4) = -12x + 24[/tex]

Second expression:

Using distributive property,

[tex]-(12x - 6) + 18 = -12x + 6 + 18 = -12x + 24[/tex]

Third expression:

Solve the expression using distributive property

[tex]-3(4x-3) + 15 = ((-3 \times 4x)+(-3 \times -3)) \\\\-3(4x-3) + 15= -12x + 9 + 15 \\\\-3(4x-3) + 15=-12x + 24[/tex]

Fourth expression:

[tex]-4(3x + 6)= -4 \times 3x + -4 \times 6\\\\-4(3x + 6)= -12x -24[/tex]

Thus fourth expression is not equivalent to other expressions