Respuesta :
Answer:
[tex]\$ 98[/tex]
Step-by-step explanation:
[tex]People\ \ \ \ \ \ \ \ \ \ \ \ \ Parking\ charge\\\\ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ 14\\\\4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ 20\\\\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ 32[/tex]
[tex]Let\ x\ be\ charge\ per\ person\ and\ y\ be\ base\ charges\\\\So\ for\ m\ people\ parking\ charges=Number\ of\ people\times x+y\\\\So\ for\ m\ people\ parking\ charges=mx+y\\\\When\ m=2,\ parking\ charges=\$ 14\\\\2x+y=14................................................eq(1)\\\\When\ m=4,\ parking\ charges=\$ 20\\\\4x+y=20................................................eq(2)\\\\Solve\ eq1\ and\ eq2\\\\eq(2)-eq(1)\\\\4x+y-2x-y=20-14\\\\2x=6\\\\x=3\\\\from\ eq(1)\\2\times 3+y=14\\\\y=14-6[/tex]
[tex]y=8[/tex]
[tex]Hence\ Parking\ charges=3x+8\\\\where\ x\ is\ number\ of\ people\\\\When\ number\ of\ people=30\Rightarrow x=30\\\\Parking\ charges=3\times 30+8\\\\Parking\ charges=90+8\\\\Parking\ charges=\$ 98[/tex]
Answer:
look at the step by step
Step-by-step explanation:
Answer: 98$
Step By Step explaination:
People Parking Charge ( 14$,20$,32)
2
4
8
Let x be charge per person and y be base changes. So for m people parking charges = x ( x + y )
So for m people parking charges = mx+y
When m = 2, parking charges = 14$
2x + y = 14
When m = 4, parking charges = 20$
4x + y = 20
Solve eq1 and eq2
eq(2) - eq(1)
4x + y - 2x - y = 20
2x = 6
x = 3
from eq(1)
2x3+ y = 14
y = 14 - 6
y = 8
Parking Charges = 3x + 8
where is the x number of people
When number of people = 30 => x 30
Parking Charges = 3 x 30 + 8
Parking Charges = 90 + 8
Answer: 98$