Respuesta :

Answer:

option B) f(x) = x³ - 3

Step-by-step explanation:

we know that

If the function represent the set of ordered pairs, then the ordered pairs, must be satisfy the function

Verify each function

case A) f(x) = -2x

verify the ordered pair (2,5)

For x=2

substitute the value of x in the function and then compare the result with the y-coordinate of the ordered pair

[tex]f(2)=-2(2)=-4[/tex]

[tex]-4\neq 5[/tex]

the ordered pair not satisfy the function

so

The function nor represent the set of the ordered pairs

case B) f(x) = x³ - 3

Verify (1,-2)

For x=-1 ---> [tex]f(1)=1^{3}-3=-2[/tex] ---> is ok

Verify (2,5)

For x=-2 ---> [tex]f(2)=2^{3}-3=5[/tex] ---> is ok

Verify (3,24)

For x=3 ---> [tex]f(3)=3^{3}-3=24[/tex] ---> is ok

Verify (4,61)

For x=4 ---> [tex]f(4)=4^{3}-3=61[/tex] ---> is ok

so

the ordered pairs satisfy the function

therefore

The function represent  the set of ordered pairs

case C) f(x) = x² - 3

verify the ordered pair (2,5)

For x=2

substitute the value of x in the function and then compare the result with the y-coordinate of the ordered pair

[tex]f(2)=2^2-3=1[/tex]

[tex]1\neq 5[/tex]

the ordered pair not satisfy the function

so

The function nor represent the set of the ordered pairs

case D) f(x) = 5x² - 7

verify the ordered pair (2,5)

For x=2

substitute the value of x in the function and then compare the result with the y-coordinate of the ordered pair

[tex]f(2)=5(2)^2-7=13[/tex]

[tex]13\neq 5[/tex]

the ordered pair not satisfy the function

so

The function nor represent the set of the ordered pairs