What is its characteristic wavelength? [Hint: Recall that the kinetic energy of a moving object is E=12mv2, where m is the mass of the object and v is the speed of the object.]

Respuesta :

Answer:

λ =  [tex]1.06 * 10^{-11} m[/tex]

Explanation:

Using the De Broglie equation, the characteristic wavelength is given by:

λ = [tex]\frac{h}{p}[/tex]

where

h = Planck's constant = [tex]6.626 * 10^{-34}[/tex] Js.

p = momentum

Momentum, p, can be calculated using:

p =  [tex]\sqrt{2Em}[/tex]

where

m = mass of the electron = [tex]9.11 * 10^{-31}[/tex] kg

E = Energy of the electron = 13.4 keV = [tex]13.4 * 10^3 * 1.6 * 10^{-19}[/tex] J = [tex]2.144 * 10^{-15}[/tex] J

=> p = [tex]\sqrt{2 * 2.144 * 10^{-15} * 9.11 * 10^{-31}}[/tex]

p = [tex]\sqrt{3.906 * 10^{-45}}[/tex]

p = [tex]6.250 * 10^{-23}[/tex] kgm/s

Therefore, characteristic wavelength, λ, is:

λ =  [tex]\frac{6.626 * 10^{-34}}{6.250 * 10^{-23}}[/tex]

λ =  [tex]1.06 * 10^{-11} m[/tex]