another rectangle has length and width in the ratio of 3:2. If the length is increased by eight and the width is increased by 50%, the ratio of the new perimeter to the original perimeter is 8:5. Find the area of the new rectangle

Respuesta :

Answer:

Area of the new rectangle  = 148.8 cm square

Step-by-step explanation:

Let x be the dimensions of the rectangle then the

Perimeter of the Original rectangle= 2(L+B)

                                                   = 2 ( 3x+2x) = 2(5x)= 10xcm

If the length is increased by eight the new length would be 3x+ 8

and width would be 2x+x= 3x after 50 % increase

Perimeter of the new rectangle= 2(L+B)

                                                     = 2 ( 3x+8 +3x)

                                                       = 2 (6x+8)

                                                       = 12x + 16

Ratio of the new perimeter to the original perimeter is

             New perimeter :   Original perimeter

                8                      : 5

           12x+ 16                   : 10x cm

80x= 60x + 16

20x= 16

x= 16/20= 4/5

Putting the value of length and breadth in place of x

Area of the new rectangle = L*B =  3 * (4/5) +8 *3(4/5)=

                                                                 = 12+ 40/5 * 12/5

                                                                   = 62/5* 12/5

                                                                     = 744/5

                                                                   = 148.8 cm square