A 0.37-kg object connected to a light spring with a force constant of 23.2 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest.(a) Determine the maximum speed of the object.(b) Determine the speed of the object when the spring is compressed 1.5 cm.(c) Determine the speed of the object as it passes the point 1.5 cm from the equilibrium position.(d) For what value of x does the speed equal one-half the maximum speed?

Respuesta :

Answer:

a) v = 31.67 cm / s , b)   v = -29.36 cm / s , c) v= 29.36 cm/s, d) x = 3.46 cm

Explanation:

The angular velocity in a simple harmonic movement is

       w = √ K / m

       w = √ 23.2 / 0.37

       w = 7,918 rad / s

a) the expression against the movement is

        x = A cos (wt + Ф)

Speed ​​is

        v = dx / dt = - A w sin (wt + Ф)

 The maximum speed occurs for cos = ± 1

        v = A w

        v = 4.0 7,918

        v = 31.67 cm / s

b) as the object is released from rest

        0 = -A w sin (0+ Фi)

        sin Ф = 0

         Ф = 0

The equation is

        x = 4.0 cos (7,918 t)

        v = -4.0 7,918 sin (7,918 t)

        v = - 31.67 sin (7.918t)

     

Let's look for the time for a displacement of x = 1.5 cm, remember that the angles must be in radians

          7,918 t = cos⁻¹ 1.5 / 4.0

          t = 1,186 / 7,918

          t = 0.1498 s

We look for speed

         v = -31.67 sin (7,918 0.1498)

         v = -29.36 cm / s

c) if the object passes the equilibrium equilibrium position again at this point the velocity has the same module, but the opposite sign

         v = 29.36 cm / s

d) let's look for the time for the condition v = v_max / 2

         31.67 / 2 = 31.67 sin ( 7,918 t)

          7.918t = sin⁻¹ 0.5

         t = 0.5236 / 7.918

         t = 0.06613

With this time let's look for displacement

         x = 4.0 cos (7,918 0.06613)

        x = 3.46 cm