Answer:
[tex]|F_2|=24.83N[/tex]
Explanation:
Newton's second law states that the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object:
[tex]\Sigma F=F_n_e_t=m*a[/tex]
Let's find the magnitude of [tex]F_1[/tex] and [tex]a[/tex] using the next concept:
[tex]|u|=\sqrt{u_1^2+u_2^2+u_3^3+...+u_n^2}[/tex]
[tex]|F_1|=\sqrt{5^2+6^2+9^2} =11.91637529N[/tex]
[tex]|a|=\sqrt{1^2+7^2+2^2}=7.348469228N[/tex]
Finally:
[tex]|F_1|+ |F_2|=m*|a|\\|F_2|=m*|a|-|F_1|\\|F_2|=5*7.348469228-11.91637529=24.82597085\approx24.83N[/tex]