If Q represents the quantity of ice crystals measured over time, then calculate Q at t=1 seconds for k=−0.8 /second. Enter your answer in decimal notation (only). Round in the tenths place to give a fractional representation of a partly formed crystal (if any)

Respuesta :

Answer:

  Q(1) = 103.25

Step-by-step explanation:

Given:

- The rate of ice crystals formation/depletion is given by:

                                      Q'(t) = k*(Q - 70)

- For the initial conditions;

                                Q(0) = 144 , k = -0.8 / sec

Find:

Calculate Q at t=1 seconds for k=−0.8 /second. Enter your answer in decimal notation (only).

Solution:

- First we will solve the differential equation to get a functions Q with time, Q(t).

- Use the given ODE:

                                      dQ/ dt = -0.8*(Q - 70)

- Separate variables:

                                     dQ / (Q - 70) = -0.8*dt

- Integrate both sides:

                                    Ln | Q - 70 | = -0.8*t + C

- Use initial conditions to evaluate @ Q(0) = 144:

                                    Ln | 144 -70 | = -0.8*0 + C

                                    C = Ln | 74 |

- The Solution is given by:

                                    Ln | (Q - 70) / 74 | = -0.8*t

                                     Q(t) - 70 = 74*e^(-0.8*t)

                                     Q(t) = 70 + 74*e^(-0.8*t)

- Now use the solution to the ODE and evaluate @ t = 1s

                                     Q(1) = 70 + 74*e^(-0.8*1)

                                    Q(1) = 103.25