A person whose eyes are c = 1.76 m above the floor stands d = 2.96 m in front of a vertical plane mirror whose bottom edge is a = 0.54 m above the floor. What is the horizontal distance to the base of the wall supporting the mirror of the nearest point on the floor that can be seen reflected in the mirror

Respuesta :

Explanation:

The given data is as follows.

     Distance between eyes of the person from the floor, c = 1.76 m

     Distance between the floor and plane mirror, d = 2.96 m

     Height of bottom edge of the mirror from the ground, a = 0.54 m

Let us assume that the horizontal distance is x. According to the figure,

        BC = c - a

              = 1.76 m - 0.54 m

              = 1.22 m

Since, the triangle ABC is similar to the triangle CDE hence,

             [tex]\frac{AB}{BC} = \frac{ED}{CD}[/tex]

            [tex]\frac{d}{BC} = \frac{x}{a}[/tex]

                        x = [tex]a \times \frac{d}{BC}[/tex]

                           = [tex]\frac{2.96 m}{1.22 m} \times 0.54 m[/tex]

                           = 1.310 m

                           = [tex]1.310 m \times \frac{100 cm}{1 m}[/tex]

                           = 131 cm

Thus, we can conclude that the horizontal distance to the base of the wall supporting the mirror of the nearest point on the floor is 131 cm.

Ver imagen OlaMacgregor