Respuesta :
Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=[tex]\frac{1}{2}[/tex] × 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = [tex]\frac{Q}{m C}[/tex]
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C
The maximum temperature increase will be "0.062°C".
Given values:
- Mass, m = 15 g
- Emerging speed, v = 534 m/s
- Horizontal speed, u = 865 m/s
According to the question,
The loss in KE of bullet will be:
= [tex]Increase \ in \ heat \ content \ of \ water+Loss \ in \ conversion[/tex]
then,
→ [tex]0.5(u^2-v^2)= mw\times cp\times \Delta T+loss[/tex]
→ [tex]mw\times cw\times \Delta T=0.5\times (u^2-v^2)-loss[/tex]
hence,
The maximum increase in temperature will be:
→ [tex]mw\times cw\times (\Delta T)max = 0.5(u^2-v^2)[/tex]
→ [tex](\Delta T)max = 0.5\times[ \frac{(u^2-v^2)}{mw\times cw} ][/tex]
By substituting the values, we get
[tex]= 0.5\times 0.015[\frac{(865^2-534^2)}{13.5\times 4180} ][/tex]
[tex]= 0.062^{\circ} C[/tex]
Thus the above answer is right.
Learn more about temperature here:
https://brainly.com/question/24279333
