Respuesta :

Average rate of change of the function: [tex]-\sqrt{3}[/tex]

Step-by-step explanation:

The average rate of change of a function f(x) can be calculated as:

[tex]r=\frac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]

where:

[tex]x_1, x_2[/tex] are the x-values of the interval taken into account to evaluate the rate of change of the function

[tex]f(x_1),f(x_2)[/tex] are the values of the function at those points

In this problem, we have:

[tex]x_1=8\\x_2=64[/tex]

The function is [tex]f(x)=-x\sqrt{3}[/tex], so

[tex]f(x_1)=f(8)=-8\sqrt{3}\\f(x_2)=f(64)=-64\sqrt{3}[/tex]

So, the average rate of change in this interval is:

[tex]r=\frac{-64\sqrt{3}-(-8\sqrt{3})}{64-8}=\frac{-56\sqrt{3}}{56}=-\sqrt{3}[/tex]

Learn more about rates of change:

brainly.com/question/4152194

brainly.com/question/12941985

#LearnwithBrainly

Answer:

-1/28

Step-by-step explanation: