Answer:
1234285.7 m or 1234.3 km
Explanation:
Let the distance be [tex]d[/tex], the time taken by P waves be [tex]t_P[/tex] and the time taken by the S waves be [tex]t_S[/tex].
[tex]\text{Velocity}\dfrac{\text{Distance}}{\text{Time}}[/tex]
[tex]\text{Time}\dfrac{\text{Distance}}{\text{Velocity}}[/tex]
For the P waves,
[tex]t_P=\dfrac{d}{8000}[/tex]
[tex]d=8000t_P[/tex]
For the S waves,
[tex]t_S=\dfrac{d}{4500}[/tex]
[tex]d=4500t_S[/tex]
Equating the [tex]d[/tex],
[tex]8000t_P=4500t_S[/tex]
Divide both sides of the equation by 500 to reduce the terms.
[tex]16t_P=9t_S[/tex]
Since S waves arrive 2 minutes (= 120 seconds) after P waves,
[tex]t_S-t_P=120[/tex]
[tex]t_S=120+t_P[/tex]
Substitute this in the equation of the distance.
[tex]16t_P=9(t_P+120)[/tex]
[tex]16t_P=9t_P+1080[/tex]
[tex]7t_P=1080[/tex]
[tex]t_P=\dfrac{1080}{7}[/tex]
Substitute this in the equation for [tex]d[/tex] involving [tex]t_P[/tex].
[tex]d=8000t_P[/tex]
[tex]d=8000\times\dfrac{1080}{7}[/tex]
[tex]d=1234285.7 \text{ m }= 1234.3 \text{ km}[/tex]