contestada

The acceleration of a particle traveling along a straight line isa=14s1/2m/s2, wheresis in meters. Ifv= 0,s= 1 m whent= 0, determine the particle’svelocity ats= 2 m.

Respuesta :

Answer:

0.78m/s

Explanation:

We are given that

Acceleration=[tex]a=\frac{1}{4}s^{\frac{1}{2}}m/s^2[/tex]

v=0, s=1 when t=0

We have to find the particle's velocity at s=2m

We know that

[tex]a=\frac{dv}{dt}=\frac{dv}{ds}\times \frac{ds}{dt}=\frac{dv}{ds}v[/tex]

[tex]vdv=ads[/tex]

[tex]\int_{0}^{v} vdv=\int_{1}^{s}0.25s^{\frac{1}{2}}ds[/tex]

[tex]\frac{v^2}{2}=0.25\times \frac{2}{3}(s^{\frac{3}{2})^{s}_{1}[/tex]

By using formula:[tex]\int x^ndx=\frac{x^{n+1}}{n+1}+C[/tex]

[tex]\frac{v^2}{2}=0.25\times \frac{2}{3}(s^{\frac{3}{2}}-1[/tex]

Substitute s=2

[tex]\frac{v^2}{2}=\frac{0.50}{3}((2^{1.5})-1)[/tex]

[tex]\frac{v^2}{2}=\frac{0.50}{3}\times 1.83[/tex]

[tex]v^2=2\times 0.305=0.61[/tex]

[tex]v=\sqrt{0.61}=0.78m/s[/tex]

Hence, the velocity of particle at s=2m=0.78m/s