A point on a string undergoes simple harmonic motion as a sinusoidal wave passes. When a sinusoidal wave with speed 24 m/s, wavelength 30 cm, and amplitude of 1.0 cm passes, what is the maximum speed of a point on the string?

Respuesta :

Answer:

5.03 m/s

Explanation:

Give

Speed = v = 24m/s

Wavelength = λ = 30cm = 0.3m

Amplitude = A = 1.0cm = 0.01m

The velocity of a point in Simple Harmonic Motion

at any time t is given by the following formula

v = ωA cos ωt

The value is the Maximum when cosωt.

The maximum value of cosωt. is 1.

Hence the maximum velocity is ωA

Velocity of the wave v=n λ

n = v/ λ = 24 /0.3 = 80

ω = 2πn = 2π*80 = 502.86 rad/s

Maximum velocity of the particle is

ωA = 502.86 * 0.01 = 5.03m/s

The maximum speed on the string will be "5.03 m/s".

Simple harmonic motion:

Given values:

  • Speed, v = 24 m/s
  • Wavelength, λ = 30 cm or, 0.3 m
  • Amplitude, A = 1.0 cm or, 0.01 m

The velocity of wave be:

→ [tex]v = n \lambda[/tex]

or,

→ [tex]n = \frac{v}{\lambda}[/tex]

      [tex]= \frac{24}{0.3}[/tex]

      [tex]= 80[/tex]

Now,

→ [tex]\omega = 2 \pi n[/tex]

By substituting the values,

      [tex]= 2 \pi\times 80[/tex]

      [tex]= 502.86 \ rad/s[/tex]

hence,

The Maximum speed be:

= [tex]\omega t[/tex]

= [tex]502.86\times 0.01[/tex]

= [tex]5.03 \ m/s[/tex]

Thus the answer above is right.

Find out more information about harmonic motion here:

https://brainly.com/question/17315536

Ver imagen Cricetus