Answer:
The 98% confidence interval for the mean purchases of all customers is ($37.40, $61.74).
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.98}{2} = 0.01[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.01 = 0.99[/tex], so [tex]z = 2.325[/tex]
Now, find M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.325*\frac{20.28}{\sqrt{20}} = 12.17[/tex]
The lower end of the interval is the mean subtracted by M. So it is 49.57 - 12.17 = $37.40.
The upper end of the interval is the mean added to M. So it is 49.57 + 12.17 = $61.74.
The 98% confidence interval for the mean purchases of all customers is ($37.40, $61.74).