Using Heisenberg's uncertainty principle, calculate the uncertainty in the position of a proton moving at a speed of ( 5.10 ±0.01)×104m/s. ( Take the mass of a proton m=1.673×10−27kg.)

Respuesta :

Answer: The uncertainty in proton's position is [tex]6.307\times 10^{-10}m[/tex]

Explanation:

The equation representing Heisenberg's uncertainty principle follows:

[tex]\Delta x.\Delta p\geq \frac{h}{2\pi}[/tex]

where,

[tex]\Delta x[/tex] = uncertainty in position = ?

[tex]\Delta p[/tex] = uncertainty in momentum  = [tex]m\Delta v[/tex]

m = mass of the particle = [tex]1.673\times 10^{-27}kg[/tex]

[tex]\Delta v[/tex] = uncertainty in speed = [tex]0.01\times 10^{4}m/s[/tex]

h = Planck's constant = [tex]6.627\times 10^{-34}kgm^2/s^2[/tex]

Putting values in above equation, we get:

[tex]\Delta x.(1.673\times 10^{-27}\times 0.01\times 10^4)=\frac{6.627\times 10^{-34}kgm^2/s^2}{2\times 3.14}\\\\\Delta x=\frac{6.627\times 10^{-34}}{2\times 3.14\times 1.673\times 10^{-27}\times 0.01\times 10^4}=6.307\times 10^{-10}m[/tex]

Hence, the uncertainty in proton's position is [tex]6.307\times 10^{-10}m[/tex]