Respuesta :

Answer:

Part a) The measure of the sides of triangle DEF are

[tex]d_D_E=\sqrt{90}\ units[/tex]

[tex]d_E_F=\sqrt{65}\ units[/tex]

[tex]d_D_F=\sqrt{221}\ units[/tex]

Part b) Is a scalene triangle

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have the coordinates

D(8,-6) E(-1,-3) F(-2,5)

step 1

Find the length side DE

D(8,-6) E(-1,-3)

substitute in the formula

[tex]d=\sqrt{(-3+6)^{2}+(-1-8)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(9)^{2}}[/tex]

[tex]d_D_E=\sqrt{90}\ units[/tex]

step 2

Find the length side EF

E(-1,-3) F(-2,5)

substitute in the formula

[tex]d=\sqrt{(5+3)^{2}+(-2+1)^{2}}[/tex]

[tex]d=\sqrt{(8)^{2}+(-1)^{2}}[/tex]

[tex]d_E_F=\sqrt{65}\ units[/tex]

step 3

Find the length side DF

D(8,-6) F(-2,5)

substitute in the formula

[tex]d=\sqrt{(5+6)^{2}+(-2-8)^{2}}[/tex]

[tex]d=\sqrt{(11)^{2}+(-10)^{2}}[/tex]

[tex]d_D_F=\sqrt{221}\ units[/tex]

step 4

Classify the triangle by the measure of its sides

we have

[tex]d_D_E=\sqrt{90}\ units[/tex]

[tex]d_E_F=\sqrt{65}\ units[/tex]

[tex]d_D_F=\sqrt{221}\ units[/tex]

so

Is a scalene triangle, because is a triangle in which all three sides have different lengths.