contestada

Three identical charges q form an equilateral triangle of side a with two charges on the x-axis and one on the positive y-axis. Find an expression for the electric field at points on the y-axis above the uppermost charge.

Respuesta :

Answer:

[tex]F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2} )[/tex]

Explanation:

Given:

- Three identical charges q.

- Two charges on x - axis separated by distance a about origin

- One on y-axis

- All three charges are vertices

Find:

- Find an expression for the electric field at points on the y-axis above the uppermost charge.

- Show that the working reduces to point charge when y >> a.

Solution

- Take a variable distance y above the top most charge.

- Then compute the distance from charges on the axis to the variable distance y:

                                  [tex]r = \sqrt{(\frac{\sqrt{3}*a }{2} + y)^2 + (a/2)^2 }[/tex]

- Then compute the angle that Force makes with the y axis:

                                 cos(Q) = sqrt(3)*a / 2*r

- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:

                                 F_1,2 = 2*F_x*cos(Q)

- The total net force would be:

                                F_net = F_1,2 + kq / y^2

- Hence,

                                [tex]F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2} )[/tex]

- Now for the limit y >>a:

                              [tex]F_n = k*q*(\frac{2*y(1 + \frac{\sqrt{3}*a }{2*y}) }{y^3((1+ \frac{\sqrt{3}*a }{2*y})^2 + (a/y*2)^2)^1.5 }) +\frac{1}{y^2} )[/tex]

- Insert limit i.e a/y = 0

                              [tex]F_n = k*q*(\frac{2}{y^2} +\frac{1}{y^2}) \\\\F_n = 3*k*q/y^2[/tex]

Hence the Electric Field is off a point charge of magnitude 3q.