Respuesta :
Answer:
[tex]F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2} )[/tex]
Explanation:
Given:
- Three identical charges q.
- Two charges on x - axis separated by distance a about origin
- One on y-axis
- All three charges are vertices
Find:
- Find an expression for the electric field at points on the y-axis above the uppermost charge.
- Show that the working reduces to point charge when y >> a.
Solution
- Take a variable distance y above the top most charge.
- Then compute the distance from charges on the axis to the variable distance y:
[tex]r = \sqrt{(\frac{\sqrt{3}*a }{2} + y)^2 + (a/2)^2 }[/tex]
- Then compute the angle that Force makes with the y axis:
cos(Q) = sqrt(3)*a / 2*r
- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:
F_1,2 = 2*F_x*cos(Q)
- The total net force would be:
F_net = F_1,2 + kq / y^2
- Hence,
[tex]F_n = k*q*(\frac{2*(y + \frac{\sqrt{3}*a }{2}) }{((y+ \frac{\sqrt{3}*a }{2})^2 + (a/2)^2)^1.5 } +\frac{1}{y^2} )[/tex]
- Now for the limit y >>a:
[tex]F_n = k*q*(\frac{2*y(1 + \frac{\sqrt{3}*a }{2*y}) }{y^3((1+ \frac{\sqrt{3}*a }{2*y})^2 + (a/y*2)^2)^1.5 }) +\frac{1}{y^2} )[/tex]
- Insert limit i.e a/y = 0
[tex]F_n = k*q*(\frac{2}{y^2} +\frac{1}{y^2}) \\\\F_n = 3*k*q/y^2[/tex]
Hence the Electric Field is off a point charge of magnitude 3q.