A common inhabitant of human intestines is the bacterium Escherichia coli, named after the German pediatrician Theodor Escherich, who identified it in 1885. A cell of this bacterium in a nutrient-broth medium divides into two cells every 20 minutes. The initial population of a culture is 50 cells.

(a) Find the relative growth rate.
(b) Find an expression for the number of cells after t hours.
(c) Find the number of cells after 6 hours.
(d) Find the rate of growth after 6 hours. (Round your answer to the nearest integer.)
(e) When will the population reach a million cells?

Respuesta :

Answer:

a). k = 2.0794

b). [tex]A_{t}=A_{0}(2^{3t} )[/tex]

c). 13107200 cells

d). rate of growth after 6 hours = 27255112

e). 4.76 hours

Step-by-step explanation:

From the formula of bacterial population,

[tex]A_{t}=A_{0}e^{kt}[/tex]

Where [tex]A_{t}[/tex] = Bacterial population after time t

[tex]A_{0}[/tex] = Initial population

k = relative growth factor

t = duration or time

a). For [tex]A_{t}=2\times 50=100[/tex] cells

and [tex]A_{0}=50[/tex] cells

Time t = 20 minutes = [tex]\frac{1}{3}[/tex] hours

Now we plug in these values in the formula,

100 = [tex]50(e^{\frac{k}{3}})[/tex]

[tex]e^{\frac{k}{3}}=2[/tex]

By taking natural log on both the sides of the equation,

[tex]\frac{k}{3}(lne)=ln(2)[/tex]

k = 3ln(2) = 2.0794

b). To get the expression we will plug in the value of k in the formula.

[tex]A_{t}=A_{0}e^{kt}[/tex]

Since k = 3ln(2)

[tex]A_{t}=A_{0}e^{3t(ln2)}[/tex]

Let y = [tex]e^{3t(ln2)}[/tex]

By taking natural log on both the sides of the equation,

lny = [tex]ln(e^{3t(ln2)} )[/tex]

lny = 3t(ln2)ln(e)

ln(y) = 3t(ln2)

ln(y) = [tex]ln(2)^{3t}[/tex]

y = [tex]2^{3t}[/tex]

Now our expression will be [tex]A_{t}=A_{0}(2^{3t} )[/tex]

c). Number of cells after t = 6 hours

[tex]A_{6}=50(2^{3\times 6} )[/tex]

[tex]A_{6}=50(2^{18})[/tex]

[tex]A_{6}=50\times (262144)=13107200[/tex]

d). We can get the rate of growth by finding derivative of the expression

[tex]\frac{d}{dt}(A_{t})=\frac{d}{dt}[A_{0}(e^{kt}})][/tex]

          = [tex]A_{0}[ke^{kt}][/tex]

Now [tex]\frac{d}{dt}(A_{6})=k.A_{6}[/tex]

                   = 2.0794×13107200

                   = 27255112

e) From the given formula,

[tex]A_{t}=A_{0}(2^{3t} )[/tex]

[tex]1000000=50(2^{3t} )[/tex]

[tex]2^{3t}=20000[/tex]

3t(ln2) = ln(20000)

t = [tex]\frac{ln(20000)}{3(ln2)}[/tex]

t = [tex]\frac{9.90349}{2.07944}=4.76[/tex] hours