A small rocket is fired from a launchpad 15 m above the ground with an initial velocity left angle 400,450,600 right angle ​m/s. A crosswind blowing to the north produces an acceleration of the rocket of 3 m divided by s squared. Assume the​ x-axis points​ east, the​ y-axis points​ north, the positive​ z-axis is vertical​ (opposite g), and the ground is horizontal. Answer parts a through d.
a. Find the velocity and position vectors for t greater than or equal to 0.
b. Make a sketch of the trajectory.
c. Determine the time of flight and range of the object.
d. Determine the maximum height of the object.

Respuesta :

Answer:

a)

v=<400, 450+3t, 600-9.81t> m/s

r=<400t, 450t+3[tex]t^{2}[/tex]/2, 15+600t-9.81[tex]t^{2}[/tex]/2> m/s

b) attach file

c) t=122.324s

d) z=18369.9854 m

Step-by-step explanation:

a)

The equation for velocity of each component is v=[tex]v_{0}[/tex]+at, in this case the x-axis component has acceleration 0[tex]\frac{m}{s^{2} }[/tex], the y-axis component has acceleration 3[tex]\frac{m}{s^{2} }[/tex] and the z-axis component has -g[tex]\frac{m}{s^{2} }[/tex], where g=9.81[tex]\frac{m}{s^{2} }[/tex].

The equation for position of each component is  x=[tex]x_{0}[/tex]+[tex]v_{0}[/tex]t+a[tex]t^{2}[/tex]/2,

with <[tex]x_{0}[/tex], [tex]y_{0}[/tex],[tex]z_{0}[/tex]>=<0,0,15>.

c) This time is t when z=0, with positive sign.

d)Solving the equation [tex]V_f^{2}[/tex]=[tex]V_o^2[/tex] + 2*a*(z-[tex]z_{0}[/tex]) for z, with [tex]V_f[/tex]=0.

Ver imagen Carincon97