Answer:
[tex]-3x^6-x^4+2x^3+2x^2-8x+8[/tex]
Step-by-step explanation:
we have
[tex](-3x^{3}+2x-4)(x^{3}+x-2)[/tex]
Applying distributive property
[tex](-3x^3)(x^3)+(-3x^3)(x)+(-3x^3)(-2)+(2x)(x^3)+(2x)(x)+(2x)(-2)+(-4)(x^3)+(-4)(x)+(-4)(-2)[/tex]
Remember the properties
[tex](-1)(-1)=(+1)\\(-1)(+1)=(-1)[/tex]
[tex]x^{m}x^{n}=x^{m+n}[/tex]
so
[tex](-3x^6)+(-3x^4)+(6x^3)+(2x^4)+(2x^2)+(-4x)+(-4x^3)+(-4x)+(8)[/tex]
Combine like terms
[tex]-3x^6-x^4+2x^3+2x^2-8x+8[/tex]