Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is
[tex]v=\sqrt{\frac{T}{\mu} }[/tex]
where T= 200 N is tension in the string , [tex]\mu[/tex]=1.0 g/m is the linear mass density
[tex]v=\sqrt{\frac{200}{1\times 10^{-3} }[/tex]
[tex]v=447.2 m/s[/tex]
Wavelength of the wave in the string is
[tex]\lambda =2L=2\times 0.8=1.6 m[/tex]
The frequency is
[tex]f=\frac{v}{\lambda} \\f=\frac{447.2}{1.6}\\f=298.25 Hz[/tex]
The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)
[tex]\lambda=\frac{v_{air}}{f} \\\lambda=\frac{344}{298.25} \\\lambda=1.15 m[/tex]