A carbon-dioxide laser emits infrared light with a wavelength of 10.6 μm
a. What is the length of a tube that will oscillate in the m = 100,000 mode?
b. What is the frequency?
c. Imagine a pulse of light bouncing back and forth between the ends of the tube. How many round trips will the pulse make in each second?

Respuesta :

Answer:

0.53 m

[tex]2.8301886792\times 10^{13}\ Hz[/tex]

283286118.98

Explanation:

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

m = Mode = 100000

[tex]\lambda[/tex] = Wavelength = [tex]10.6\ \mu m[/tex]

Length of a tube is given by

[tex]L=m\dfrac{\lambda}{2}\\\Rightarrow L=100000\dfrac{10.6\times 10^{-6}}{2}\\\Rightarrow L=0.53\ m[/tex]

The length of the tube is 0.53 m

Frequency is given by

[tex]f=\dfrac{c}{\lambda}\\\Rightarrow f=\dfrac{3\times 10^8}{10.6\times 10^{-6}}\\\Rightarrow f=2.8301886792\times 10^{13}\ Hz[/tex]

The frequency is [tex]2.8301886792\times 10^{13}\ Hz[/tex]

Time taken to bounce back and forth

[tex]t=\dfrac{2L}{c}\\\Rightarrow t=\dfrac{2\times 0.53}{3\times 10^8}\\\Rightarrow t=3.53\times 10^{-9}\ s[/tex]

Round trips in one second

[tex]n=\dfrac{1}{3.53\times 10^{-9}}\\\Rightarrow n=283286118.98[/tex]

The number of round trips is 283286118.98