Answer:
[tex] |F-725|<65[/tex]
With F represent the variable of interest:
[tex]-65< F-725< 65[/tex]
[tex]-65+725< F< 65+725[/tex]
[tex] 660 < F< 790[/tex]
Step-by-step explanation:
For this case we have a normal limits for the temperature Range. The minimum is 660 F and the maximum 790 F.
We can find the midpoint of this interval like this:
[tex] Midpoint= \frac{660+790}{2}= 725[/tex]
And the difference between the midpoint and the limits are:
[tex] |790-725|= 65[/tex]
[tex] |680-725|= 65[/tex]
So then we can create the following inequality:
[tex] |F-725|<65[/tex]
With F represent the variable of interest.:
[tex]-65< F-725< 65[/tex]
[tex]-65+725< F< 65+725[/tex]
[tex] 660 < F< 790[/tex]