The industrial process that is used to convert a fuel to gasoline is carried out at a temperature range of 660 degrees°F to 790 degrees°F. Using F as the​ variable, write an absolute value inequality that corresponds to this range.

Respuesta :

Answer:

[tex] |F-725|<65[/tex]

With F represent the variable of interest:

[tex]-65< F-725< 65[/tex]

[tex]-65+725< F< 65+725[/tex]

[tex] 660 < F< 790[/tex]

Step-by-step explanation:

For this case we have a normal limits for the temperature Range. The minimum is 660 F and the maximum 790 F.

We can find the midpoint of this interval like this:

[tex] Midpoint= \frac{660+790}{2}= 725[/tex]

And the difference between the midpoint and the limits are:

[tex] |790-725|= 65[/tex]

[tex] |680-725|= 65[/tex]

So then we can create the following inequality:

[tex] |F-725|<65[/tex]

With F represent the variable of interest.:

[tex]-65< F-725< 65[/tex]

[tex]-65+725< F< 65+725[/tex]

[tex] 660 < F< 790[/tex]