To meet a U.S. Postal Service requirement, employees' footwear must have a coefficient of static friction of 0.5 or more on a specified tile surface. A typical athletic shoe has a coefficient of 0.810. In an emergency, what is the minimum time interval in which a person starting from rest can move 3.25 m on a tile surface if she is wearing the athletic shoe?

Respuesta :

Answer:

Minimum time interval (t2)=0.90 SECONDS

Explanation:

  • coefficient of friction for employees footwear = 0.5
  • coefficient of friction for typical athletic shoe = 0.810
  • frictional force = coefficient of friction X acceleration due to gravity X mass of body
  • Acceleration due to gravity is a constant = 9.81 m/s
  • Let frictional force for employee footwear = FF1
  • Let frictional force for athletic footwear =FF2

                 FF1 = O.5 X 9.81 X mass of body

                         = 4.905 x mass of body

                  FF2 = 0.810 X 9.81 X mass of body

                          = 7.9461 x mass of body

The body started from rest there by making the initial velocity zero ( u = 0)

From d= ut + 1/2 a x [tex]t^{2}[/tex]

  •      d = [tex]\frac{1}{2}[/tex] x a x [tex]t^{2}[/tex]  .....................................i  

            where d= distance and it is given as 3.25m

  •          F =ma  ...................................ii

making acceleration subject of the formula from equation ii

  •              a =[tex]\frac{F}{m}[/tex]

         Making t subject of formula from equation (i)

  • t=[tex]\sqrt{\frac{2d}{(f/m} }[/tex]

    where

  • [tex]\frac{FF1}{Mass of body}[/tex] = 4.905
  • [tex]\frac{FF2}{Mass of body}[/tex] =7.9461

  Let

  •            t1 = minimum time taken for frictional force for employee foot wear
  •                                 t1 = [tex]\sqrt{\frac{6.5}{4.905} }[/tex] =1.15 seconds

  •                                  t2 = [tex]\sqrt{\frac{6.5}{7.9461} }[/tex] = 0.90 seconds

 

THANK YOU