f(x, y) = x2e2xy (a) Evaluate f(7, 0). (b) Find the domain of f. the set of real numbers × (0, [infinity]) (0, [infinity]) × the set of real numbers (0, [infinity]) × (0, [infinity]) (0, [infinity]) × (1/2, [infinity]) the set of real numbers × the set of real numbers (c) Find the range of f. (Enter your answer using interval notation.)

Respuesta :

Answer:

(a) [tex]f(7,0) = 49[/tex]

(b) The set of real numbers [tex]\mathbb{R}^2[/tex]

(c) The set of positive real numbers [tex]\mathbb{R}^+[/tex]

Step-by-step explanation:

To evaluate [tex]f(7,0)[/tex], simply substitute[tex]x=7[/tex] and [tex]y=0[/tex] into the given function [tex]f(x,y) = x^2 e^{2xy}[/tex]. This will give [tex]49[/tex].

The domain of [tex]f(x,y)[/tex]is the set of values of [tex]x[/tex] and [tex]y[/tex] for which [tex]f(x,y)[/tex] is defined. In this case, there is no value of [tex]x[/tex] or [tex]y[/tex] that makes the function [tex]f(x,y) = x^2e^{2xy}[/tex] undefined. Therefore, the domain is the set of all real numbers, that  is [tex]x \in \mathbb{R}, y \in \mathbb{R}[/tex].

To determine the range of [tex]f(x,y)[/tex], let's use a logical approach.

First of all, irrespective of the value of [tex]x[/tex], the [tex]x^2[/tex] part of the function [tex]f(x,y)[/tex] is always positive.

For the exponential part of the function:

* if [tex]x[/tex] and [tex]y[/tex] are positive, [tex]e^{2xy}[/tex] is positive

* if one of [tex]x[/tex] or [tex]y[/tex] is negative, [tex]e^{2xy}[/tex] is positive

* if both [tex]x[/tex] and [tex]y[/tex] are negative, [tex]e^{2xy}[/tex] is positive.

Therefore, since the function is always positive irrespective of the values of [tex]x[/tex] and [tex]y[/tex], we can conclude that the range of [tex]f(x,y)[/tex] is the set of positive real numbers.