Respuesta :
Answer:
a) [tex]y=0.0831 x +0.004[/tex]
b) [tex] y= -0.330X + 12.5[/tex]
And we see that the values are different from the result of part a
c) Using the results from part b we can say:
Every increase of one degree Celsius means about -0.33 fewer mean millimeters of coral growth per year.
Step-by-step explanation:
Part a
For this case we can calculate the mean with the following formula:
[tex]\bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
For this case the notation is given by:
X ="Growth"
Y= "Sea Surface Temperature"
X: 29.67 29.87 30.15 30.21 30.47, 30.64 30.80
Y: 2.64 2.59 2.69 2.60 2.48 2.38 2.25
After apply the formula we got:
[tex]\bar X = 30.259[/tex]
[tex]\bar Y = 2.519[/tex]
n=7 represent the pairred values
And in order to calculate the correlation coefficient we can use this formula:
[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]
After replace the values we got: r =-0.85
The slope formula would be given by:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
[tex]S_{yy}=\sum_{i=1}^n y^2_i -\frac{(\sum_{i=1}^n y_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =211.81[/tex]
[tex]\sum_{i=1}^n y_i =17.63[/tex]
[tex]\sum_{i=1}^n x^2_i =6410.063[/tex]
[tex]\sum_{i=1}^n y^2_i =44.55[/tex]
[tex]\sum_{i=1}^n x_i y_i =533.13[/tex]
So then the solope would be given by:
[tex] m = \frac{533.13}{6410.063}=0.0831[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=2.519-(0.0831*30.259)=0.0044[/tex]
So the line would be given by:
[tex]y=0.0831 x +0.004[/tex]
Part b
For this case we can use the following R code:
> x<-c(29.67, 29.87, 30.15, 30.21, 30.47, 30.64, 30.80)
> y<-c(2.64,2.59,2.69,2.60,2.48,2.38,2.25)
> linearMod <- lm(y ~ x)
> linearMod
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
12.5009 -0.3299
For this case the equation is given by:
[tex] y= -0.330X + 12.5[/tex]
And we see that the values are different from the result of part a.
Part c
Using the results from part b we can say:
Every increase of one degree Celsius means about -0.33 fewer mean millimeters of coral growth per year.