A lab technician uses laser light with a wavelength of 670 nm to test a diffraction grating. When the grating is 40.0 cm from the screen, the first-order maxima appear 6.00 cm from the center of the pattern. How many lines per millimeter does this grating have?

Respuesta :

Answer:

N = 221.4 lines / mm

Explanation:

Given:

- The wavelength of the source λ = 670 nm

- Distance of the grating from screen B = 40.0 cm

- The distance of first bright fringe from central order P = 6.0 cm

Find:

How many lines per millimeter does this grating have?

Solution:

- The derived results from Young's experiment that relates the order of bright fringes about the central order is given by:

                                          sin (Q) = n*λ*N

Where,

n is the order number 0, 1 , 2, 3 , ....

λ  is the wavelength of the light source

Q is the angle of sweep respective fringe from central order

N is the number of lines/mm the grating has

- We will first compute the length along which the light travels for the first bright fringe:

                                            L^2 = P^2 + B^2

                                            L^2 = 40^2 + 6^2

                                            L^2 = 1636

                                            L = 40.45 cm  

- Now calculate the sin(Q) that the fringe makes with the central order:

                                            sin (Q) = P / L

                                            sin (Q) = 6 / 40.45

- Now we will use the derived results:

                                           N = sin(Q) / n*λ

  Where, n = 1 - First order

  Plug values in                N = (6 / 40.45) / (670 *10^-6)

                                          N = 221.4 lines / mm

In the given case, the number of lines per millimeter this grating have - 223.9 lines per mm

Given:

The wavelength λ = 670 nm

Distance of the grating from screen L = 40.0 cm  

The distance of first bright fringe from central order y = 6.0 cm  

Solution:  

  • The derived results from Young's experiment that relates the order of bright fringes about the central order is given by:  

with the method of small-angle approximation,

y = m(lam)(L)/d

and,

d = m(λ)(L)/y

Placing the given value

d = 1 x 670 x [tex]10^{-9}[/tex] x .4m / 0.06m

= 4.467 × [tex]10^{-6}[/tex]

Then lines per mm = 1/d

1/4.467× = lines per mm

= 223.9 lines per mm

Thus, In the given case, the number of lines per millimeter this grating have - 223.9 lines per mm

Learn more:

https://brainly.com/question/14673607