(a) Evaluate the polynomial y = x3 − 7x2 + 8x − 0.35 at x = 1.37. Use 3-digit arithmetic with chopping. Evaluate the percent relative error. (b) Repeat (a) but express y as y = ((x − 7)x + 8)x − 0.35 Evaluate the error and compare with part (a).

Respuesta :

Answer:

a) e1 = 155.5%

b) e2 = 9.168%

e2 < e1

Explanation:

To solve the problem we need to calculate the absolute error between Ya and Ye where Ya is the approximate value (using 3-digit chopping) and Ye is the exact value. To calculate Ye we need to take all the decimals when solving the equation and to find Ya we need to take 2 decimals after performing any operation inside brackets to solve the equation, the percent relative error e is calculated using abs((Ya-Ye)/(Ye))*100%

a)

X=1.37                   3-digit approximation                Real value  

(X*X)*X                   2.571353                                    2.56

-7*(X*X)                 -13.1383                                      -13

8X                          10.96                                          10.9

-0.35                     -0.35                                           -0.35

Total                       0.043053                                  0.11

Therefore the error e1 is abs((0.11-0.043053)/(0.043053))*100 = 155.5%

b)

X=1.37                   3-digit approximation                Real value  

((X-7)*X+8)*X         0.393053                                  0.397

-0.35                     -0.35                                          -0.35

Total                      0.043053                                  0.047

Therefore the error e2 is abs((0.047-0.043053)/(0.043053))*100 = 9.168%

The error e2 is much smaller than e1 this is because the second equation was factorization in such a way that the number of operations was reduced therefore the cumulative error is reduced.