Answer:
For [tex]m=1[/tex] and [tex]n=2[/tex], the expression is satisfied dimensionally.
Explanation:
[tex]x=ka^mt^n[/tex]
[tex]x[/tex] is a position and has a dimension of length, [tex]L[/tex].
[tex]a[/tex] is acceleration which has dimensions of [tex]LT^{-2}[/tex].
[tex]t[/tex] is time with dimension of [tex]T[/tex].
Since [tex]k[/tex] is dimensionless, we do not factor it into the dimensional equation as below:
[tex]L = (LT^{-2})^mT^n[/tex]
Expanding the first term on the right hand side,
[tex]L = L^mT^{-2m}T^n[/tex]
Applying the laws of indices,
[tex]L = L^mT^{-2m+n}[/tex]
The index of each fundamental dimension must be equal on both sides.
For [tex]L[/tex],
[tex]1=m[/tex]
For [tex]T[/tex],
[tex]0=-2m+n[/tex]
But [tex]1=m[/tex]
[tex]0=-2\times1+n[/tex]
[tex]0=-2+n[/tex]
[tex]2=n[/tex]
Thus, the equation is dimensionally satisfied for the given values of [tex]m=1[/tex] and [tex]n=2[/tex].