The pressure, temperature, and density of a flow are SLS conditions. Assuming isentropic flow, if the temperature at another point in the flow increases to 600°R, calculate the pressure and density at this new point. 2. Calculate the total/stagnation conditions (density, pressure, temperature) of the flow in #1 above. 3. Calculate the airspeed of the flow at points 1 and 2 in #1. 4. The freestream conditions in an isentropic flow moving at 300 m/s are SLS conditions. If the local pressure at a point along the airfoil drops to 0.5 atm, calculate the local airspeed at that point. 5. If we used Bernoulli’s Equation to solve for #3, what would the local velocity be? What is the percent difference from your results in #3?

Respuesta :

Answer:

1. ρ₂ = 1.76 kg/m³ , P₂ = 168.699 kPa

2. T₀ = 345.75  K, P₀  = 191.742 kPa,  ρ₀= 1.93 kg/m³

3. V₁ = 340.26 m/s , V₂ = 365.96 m/s

4. the local airspeed at 0.5 atm point = 308.2 m/s

5. The percentage difference is = 6.98 % ≈ 7 %

Explanation:

Pressure, P = 101.325 kPa  

Density = 1.225 kg/m³

Temperature, T =  288.15 K = 518.67 °R  

Gas constant of air, Rair = 287.057 J/(kg·K)

 

1. Thus since the density, ρ₁ at sea level standard, SLS = 1.225 kg/m³

T₁ = 288.15, γ = 1.005, T₂ = 600 °R = 333.33 K

ρ₂ = ρ₁×  [tex](\frac{T_{2} }{T_{1} }) ^{\frac{1}{\gamma - 1} }[/tex]

 

= 1.225×  [tex](\frac{333.33}{288.15}) ^{\frac{1}{1.4 - 1} }[/tex]

 

= 1.76 kg/m³

Similarly the pressure P₂ is given by  [tex]P_{1} (\frac{T_{2} }{T_{1} }) ^{\frac{\gamma}{\gamma - 1} }[/tex]

 

From where P₁ = 101.325 kPa hence P₂ = 168.699 kPa

2). Speed =  [tex]\sqrt{kRT}[/tex]

 

= Where R = 287.057 J/(kg·K)

Hence speed =  [tex]\sqrt{1.4*287.057*288.15}[/tex]       = 340.26 m/s

Therefore T₀ = T₁ +  [tex]\frac{V_{1} ^{2} }{2C_{p} }[/tex]

 

= 288.15 + 340.26²/(2×1.005))×(1/1000) = 345.75  K

Therefore as we have  

 [tex]P_{0} = P_{1} (\frac{T_{01} }{T_{1} }) ^{\frac{1}{\gamma - 1} }[/tex]

, P₀ =101325 ×(345.75/288.15)^(1.4/(1.4-1)

= 191.742 kPa

and ρ₀ = ρ₁ ×[tex](\frac{T_{01} }{T_{1} }) ^{\frac{1}{\gamma - 1} }[/tex]

 ρ₁ = 1.225 kg/m³, T₀ = 345.75  K, T₁ = 288.15 K

∴ ρ₀= 1.93 kg/m³

3.)  The speed is given as Speed =  [tex]\sqrt{kRT}[/tex]

 

Hence at 1 speed as previously calculated = 340.26 m/s

while at 2 speed =  [tex]\sqrt{1.4*287.057*333.33}[/tex]

 

= 365.96 m/s

4.) If the speed drops to 0.5 atm we have  

 [tex]\frac{P_{2} }{P_{1} } =(\frac{T_{2} }{T_{1} }) ^{\frac{\gamma}{\gamma - 1} }[/tex] from where P₂/P₁ = 101.325 kPa/ 50.6625 kPa = 0.5 hence

0.5 = [tex](\frac{T_{2} }{288.15 }) ^{\frac{1.4}{1.4 - 1} }[/tex]

From where T₂ = 236.4 K

Hence speed =  [tex]\sqrt{kRT}[/tex] =

=  [tex]\sqrt{1.4*287.057*308.2}[/tex]

= 308.2 m/s

5.) With Bernoulli's equation we have

We have ΔP/ρ -v₁²/2 = -v₂²/2

Hence we have (101.325 kPa -168.699 kPa )/1.225 kg/m3 - (340.26 m/s )²/2 = -v₂²/2

or v₂ = 340.42 m/s

The percentage difference is 100* (365.96 m/s  - 340.42 m/s)/365.96 m/s = 6.98 % ≈ 7 %