Answer:
Step-by-step explanation:
Given that of the volunteers coming into a blood center, 1 in 3 have O+ blood, 1 in 15 have O-, 1 in 3 have A+, and 1 in 16 have A-.
i.e. we can say out of the volunteers
O+ = [tex]\frac{1}{3}[/tex] = 0.3333
O-=[tex]\frac{1}{15}[/tex]=0.06667
A+=[tex]\frac{1}{3}[/tex]=0.3333
A-=[tex]\frac{1}{16}[/tex]=0.0625
Total = 0.795833
We can say remaining belong to B or AB.
%he probability that the person selected has________.
a. type O+ blood = [tex]\frac{0.3333}{0.7958} =0.4188[/tex]
b. type O blood= [tex]\frac{0.3333+0.06667}{0.7958} =0.5026[/tex]
c. type A blood = [tex]\frac{0.3333+0.0625}{0.7958} =0.4974[/tex]
d. neither type A nor type O blood = [tex]1-0.7958\\= 0.2042[/tex]