Perform the following computations.You may use13≈0.333333,34= 0.75 and100301= 0.332226.(i). Compute13+34by using five significant digits rounding arithmetic and compute the absoluteand relative errors.(ii) Compute13−100301by using five significant digits chopping arithmetic and compute the absoluteand relative errors

Respuesta :

Answer:

a. 1.0833

Absolute Error = 0.416667

Relative Error = 1.250002

b. 0.0011070

Absolute Error = 0.0011070

Relative Error = 0.003321

Step-by-step explanation:

Given

1/3 = 0.333333

3/4 = 0.75

100/301 = 0.332226

a.

1/3 + 3/4

= 0.333333 + 0.75

= 1.083333

= 1.0833 ------ Approximated to 5 significant digits

Absolute Error = |Real Value - Estimated Value|

Relative Error = Absolute Error/Real Value

Assume 1/3 to be the real value and 3/4 to be the estimated value

Absolute Error = |0.333333 - 0.75|

Absolute Error = |-0.416667|

Absolute Error = 0.416667

Relative Error = 0.416667/0.333333

Relative Error = 1.250002

b.

1/3 - 100/301

= 0.333333 - 0.332226

= 0.001107

= 0.0011070 ----- Approximated to 5 significant digits

Assume 1/3 to be real value and 100/301 to be estimated value

Absolute Error = 0.333333 - 0.332226

Absolute Error = 0.0011070

Relative Error = 0.0011070/0.333333

Relative Error = 0.003321

Absolute and relative errors are approximation errors and they are due to the discrepancy between an exact value and some approximation to them.

The absolute error is the magnitude of the difference between the exact value and the approximation. The relative error is the absolute error divided by the magnitude of the exact value