The vapor pressure of liquid iron is 400 mm Hg at 2.89Ã103 K. Assuming that its molar heat of vaporization is constant at 351 kJ/mol, the vapor pressure of liquid Fe is ________ mm Hg at a temperature of 2.92Ã103 K.

Respuesta :

Answer: The vapor pressure of Fe at [tex]2.92\times 10^3K[/tex] is 465 mm Hg

Explanation:

The vapor pressure is determined by Clausius Clapeyron equation:

[tex]ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}(\frac{1}{T_1}-\frac{1}{T_2})[/tex]

where,

[tex]P_1[/tex]= initial pressure at [tex]2890K[/tex] = 400 mm Hg

[tex]P_2[/tex] = final pressure at [tex]2920K[/tex] = ?

[tex]\Delta H_{vap}[/tex] = enthalpy of vaporisation = 351 kJ/mol = 351000 J/mol

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex]= initial temperature = 2890 K

[tex]T_2[/tex] = final temperature = 2920 K

Now put all the given values in this formula, we get

[tex]\log (\frac{P_2}{400})=\frac{351000}{2.303\times 8.314J/mole.K}[[\frac{1}{2890K}-\frac{1}{2920K}][/tex]

[tex]\log (\frac{P_2}{400})=0.06517[/tex]

[tex](\frac{P_2}{400})=1.162[/tex]

[tex]P_2=465mmHg[/tex]

Thus the vapor pressure of Fe at [tex]2.92\times 10^3K[/tex] is 465 mm Hg