The 2-Mg concrete pipe has a center of mass at point G. If it is suspended from cables AB and AC, determine the diameter of cable AB so that the average normal stress in this cable is the same as in the 10-mm-diameter cable AC.

Respuesta :

Answer:

d_ab = 0.01189 m or 11.89 mm

Explanation:

Given:

- Weight of the block W = 2 Mg

- The diameter of cable AC, d_ac = 10 mm

Find:

- determine the diameter of cable AB so that the average normal stress in this cable is the same as in the cable AC.

Solution:

- We will apply equilibrium conditions on the given structure:

             Sum of forces in vertical y direction = 0

                        F_ab*cos(30) + F_ac*sin(45) - W = 0

   Where,         W = 2*10^3 * 9.81 = 19.62 KN

                       F_ab*cos(30) + F_ac*sin(45) - 19.62 = 0   .... 1

             Sum of forces in horizontal x direction = 0

                        F_ab*sin(30) - F_ac*cos(45) = 0               ..... 2

- Now solve Equation 1 and 2 simultaneously:

  From Eq 2:   F_ac*cos(45) = F_ab*sin(30)

  Input Eq 1:    F_ab * (cos(30) + sin(30)) = 19.62

                       F_ab = 19.62 /  (cos(30) + sin(30))

                       F_ab =  14.36 KN

  Input Eq 2:   F_ac = 14.36*sin(30) / cos(45)

                      F_ac = 10.16 KN

- Compute the cross-section areas of the both cables:

                       A_ac = pi*d_ac^2 / 4 = pi*(0.01)^2 / 4

                       A_ac = pi*d_ab^2 / 4 = pi*(d_ab)^2 / 4

- Compute the normal stress in both cables:

                       Q_ac = F_ac / A_ac

                       Q_ab = F_ab / A_ab

We know that: Q_ab = Q_ac

                        F_ac / A_ac = F_ab / A_ab

- Plug in the values:

                       F_ac / F_ab = A_ac / A_ab

                       10.16 / 14.36 = (pi*(0.01)^2 / 4) / (pi*(d_ab)^2 / 4)

                       d_ab = sqrt (14.355*0.01^2 / 10.16)

                       d_ab = sqrt (0.000141338)

                       d_ab = 0.01189 m or 11.89 mm