On your own, verify that the indicated expression is an implicit solution of the given first-order differential equation. dX dt = (X − 1)(1 − 2X); ln 2X − 1 X − 1 = t

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]ln\frac{2X-1}{X-1}=t[/tex]

DE:[tex]\frac{dX}{dt}=\frac{X-1}{1-2X}[/tex]

When given expression is  a solution of given DE then it satisfied the DE.

Differentiate w.r.t t

[tex]\frac{1}{\frac{2X-1}{X-1}}\times \frac{2X'(X-1)-X'(2X-1)}{(X-1)^2}=1[/tex]

By using the formula:[tex]\frac{d(lnx)}{dx}=\frac{1}{x}[/tex]

[tex]\frac{d(\frac{u}{v})}{dx}=\frac{u'v-v'u}{v^2}[/tex]

[tex]\frac{2X'X-2X'-2X'X+X'}{(X-1)}\times \frac{1}{2X-1}=1[/tex]

[tex]\frac{-X'}{2X-1}=X-1[/tex]

[tex]X'=-\frac{X-1}{2X-1}[/tex]

[tex]\frac{dX}{dt}=\frac{X-1}{1-2X}[/tex]

LHS=RHS

Hence, given expression is an implicit solution of given DE.