Through one half of an ACC basketball season the scores for games between North Carolina schools were:
UNC 95 - Wake Forest 57
UNC 88 - Duke 72
NCSU 94 - Wake Forest 74
Wake Forest 70 - Duke 71
Duke 70 - UNC 79

The team listed second is the away team. Since it is hard for an away team to win, weight the games in which the away team wins by a factor of 1.4.

Use the weighted Massey Method to rank the teams based on these games.

(Round ratings to four decimal places.)

Respuesta :

EXPLANATION:

I have attached a table containing point differentials for teams.

Massey’s ratings are based on the principle that for each

game the difference in the ratings should be equal to the point differential.

Mathematically,

ri − rj = yk

[tex]r_{i}\;-\;r{j} = y_k\\\\where \\r_{i}\; = \;rating \;for\; team\; i,\\ r_{j} \;=\;rating\; for \;team\; j\\and y_{k}\; =\; score\; for \;team \;i\; - \;score\; for \;team\; j\; for\;game\; k.[/tex]

For our teams, therefore, we have

[tex]r_{1}\;-r_{2}\;=\;15.2\\\\r_{1}\;-r_{3}\;=\;-12.8\\\\r_{2}\;-r_{3}\;=\;-29.4\\\\r_{2}\;-r_{4}\;=\;9.6\\[/tex]

In Matrix Form;

[tex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;X\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;r\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;y\\\\\left[\begin{array}{cccc}1&-1&0&0\\1&0&-1&0\\0&1&-1&0\\0&1&0&-1\end{array}\right] \left[\begin{array}{c}r_{1}&r_{2}&r_{3}&r_{4}\end{array}\right] \;=\;\left[\begin{array}{c}15.2&-12.8&-29.4&9.6\end{array}\right] \\[/tex]

This turns out to be an inconsistent system  of equations with no solutions. Therefore, I using method of least squares to find a solution to the normal equations  we get by multiplying by [tex]X^{T}[/tex].

Mathematically,

[tex]X^{T} X*r\;=\;X^{T}Y[/tex]

Assuming M = [tex]X^{T} X[/tex] and P = [tex]X^{T} y[/tex], above equation can be written as

[tex]M\;*\;r\;=\;P\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;......\;(1)[/tex]

[tex]M\;=\;X^{T}X\; =\; \left[\begin{array}{cccc}1&1&0&0\\-1&0&1&1\\0&-1&-1&0\\0&0&0&-1\end{array}\right] \left[\begin{array}{cccc}1&-1&0&0\\1&0&-1&0\\0&1&-1&0\\0&1&0&-1\end{array}\right] \\\\\\\\M\;=\;\left[\begin{array}{cccc}2&-1&-1&0\\-1&3&-1&-1\\-1&-1&2&0\\0&-1&0&1\end{array}\right][/tex]

[tex]Similarly,\\\\P\;=\;X^{T}y\; =\; \left[\begin{array}{cccc}1&1&0&0\\-1&0&1&1\\0&-1&-1&0\\0&0&0&-1\end{array}\right] \left[\begin{array}{c}15.2&-12.8&-29.4&9.6\end{array}\right] \\\\\\\\P\;=\;\left[\begin{array}{c}2.4&-35&42.2&-9.6\end{array}\right][/tex]

Unfortunately, M is not invertible. To get around this, Massey replaces the n-th row of the matrix M by  a row of 1’s and replacing the final row of P by a zero. The adjusted matrices will be written as M' and P', respectively.

[tex]M'\;=\;\left[\begin{array}{cccc}2&-1&-1&0\\-1&3&-1&-1\\-1&-1&2&0\\1&1&1&1\end{array}\right][/tex]

[tex]and\;\;\;\;\;\;P'\;=\;\left[\begin{array}{c}2.4&-35&42.2&0\end{array}\right][/tex]

Equation (1) will become,

[tex]\;\;\;\;M'\;*\;r\;=\;P'\\\\\therefore\;\;r\;=\;P'M'^{-1}[/tex]

where,

[tex]M'^{-1}\;=\;\left[\begin{array}{cccc}0.666&0.25&0.333&0.25\\0&0.25&0&0.25\\0.333&0.25&0.666&0.25\\-1&-0.75&-1&0.25\end{array}\right][/tex]

[tex]\therefore\;\;r\;=\;\left[\begin{array}{c}2.4&-35&42.2&0\end{array}\right]\left[\begin{array}{cccc}0.666&0.25&0.333&0.25\\0&0.25&0&0.25\\0.333&0.25&0.666&0.25\\-1&-0.75&-1&0.25\end{array}\right]\\\\\\\\.\;\;\;\;\;r\;=\;\left[\begin{array}{c}6.9167&-8.7500&20.1833&-18.3500\end{array}\right][/tex]

Thus, ranking will be as follows;

Rank 1  = DUKE (rating = 20.1833)

Rank 2 = UNC (rating = 6.9167)

Rank 3 = WAKE FOREST (rating = -8.7500)

Rank 4 = NCSU (rating = -18.3500)

Ver imagen khurramilyas95