Answer:
option B is correct
Step-by-step explanation:
P[tex]_{1}[/tex] = 0.36
P[tex]_{2}[/tex] = 0.26
n[tex]_{1}[/tex]= 60
n[tex]_{2}[/tex]=50
Sampling distribution
μ = P[tex]_{1}[/tex] - P[tex]_{2}[/tex] = 0.36 - 0.26 = 0.10
σ = [tex]\sqrt{\frac{p_{1}(1-p_{1}) }{n_{1}} + \frac{p_{2}(1-p_{2}) }{n_{2}} }[/tex] = [tex]\sqrt{\frac{0.36(1-0.36) }{60} + \frac{0.26(1-0.26) }{50} }[/tex]
= 0.0877
the Z-score = [tex]\hat{p_{1}} - \hat{p_{2}}[/tex] = 0.15
z = [tex]\frac{0.15-0.10}{0.0877}[/tex] = 0.57
P([tex]\hat{p_{1}} - \hat{p_{2}}[/tex] > 0.15) = P(z >0.57)= 1 - P(z ≤0.57)
1-0.7157 = 0.2843
option B is correct