PLEASE ANSWER THIS!!
The figures below are based on semicircles and squares. Find the perimeter and the area of each shape. Give your answer as a completely simplified exact value in terms of π (no approximations).c

PLEASE ANSWER THIS The figures below are based on semicircles and squares Find the perimeter and the area of each shape Give your answer as a completely simplif class=

Respuesta :

Perimeter of the shape [tex]$=18\pi[/tex] cm

Area of the shape [tex]$=108\pi[/tex] cm²

Solution:

Diameter of the semi-circle AB = BC = CD = 6 cm

Radius of AB = BC = CD = 6 ÷ 2 = 3 cm

Diameter of the semi-circle AD = 6 + 6 + 6 = 18 cm

Radius of the semi-circle AD = 18 ÷ 2 = 9 cm

Let us first find the perimeter of the shape:

Perimeter of the semi-circle AB = [tex]\pi r[/tex]

                                                    [tex]$=\pi\times3[/tex]

Perimeter of the semi-circle AB [tex]$=3\pi[/tex] cm

Perimeter of the semi-circle AD = [tex]\pi r[/tex]

                                                    [tex]$=\pi\times9[/tex]

Perimeter of the semi-circle AD [tex]$=9\pi[/tex] cm

Perimeter of the shape = Perimeter of (AB + BC + CD) + Perimeter of AD

                                       [tex]$=3\pi+3\pi+3\pi+9\pi[/tex]

                                       [tex]$=18\pi[/tex] cm

Perimeter of the shape [tex]$=18\pi[/tex] cm

To find the area of the shape:

Area of the semi-circle AB = [tex]\pi r^2[/tex]

                                            [tex]=\pi\times 3^2[/tex]

Area of the semi-circle AB [tex]=9\pi[/tex] cm²

Area of the semi-circle AD = [tex]\pi r^2[/tex]

                                            [tex]=\pi\times 9^2[/tex]

Area of the semi-circle AD [tex]=81\pi[/tex] cm²

Area of the shape = Area of (AB + BC + CD) + Area of AD

                              [tex]$=9\pi+9\pi+9\pi+81\pi[/tex]

                              [tex]$=108\pi[/tex] cm²

Area of the shape [tex]$=108\pi[/tex] cm²

Perimeter of the shape [tex]$=18\pi[/tex] cm

Area of the shape [tex]$=108\pi[/tex] cm²

Answer:

A = 54 pi

P = 18 pi

lol