PLEASE PLEASE ANSWER!
Find the area of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximations).

PLEASE PLEASE ANSWER Find the area of the shaded regions below Give your answer as a completely simplified exact value in terms of π no approximations class=

Respuesta :

The area of the shaded region is [tex]$8(\pi \ -\sqrt{3})\ \text{cm}^2[/tex].

Solution:

Given radius = 4 cm

Diameter = 2 × 4 = 8 cm

Let us first find the area of the semi-circle.

Area of the semi-circle = [tex]\frac{1}{2}\times \pi r^2[/tex]

                                      [tex]$=\frac{1}{2}\times \pi\times 4^2[/tex]

                                      [tex]$=\frac{1}{2}\times \pi\times 16[/tex]

Area of the semi-circle = [tex]$8\pi[/tex] cm²

Angle in a semi-circle is always 90º.

∠C = 90°

So, ABC is a right angled triangle.

Using Pythagoras theorem, we can find base of the triangle.

[tex]AC^2+BC^2=AB^2[/tex]

[tex]AC^2+4^2=8^2[/tex]

[tex]AC^2=64-16[/tex]

[tex]AC^2=48[/tex]

[tex]AC=4\sqrt{3}[/tex] cm

Base of the triangle ABC = [tex]4\sqrt{3}[/tex] cm

Height of the triangle = 4 cm

Area of the triangle ABC = [tex]\frac{1}{2}\times b \times h[/tex]

                                          [tex]$=\frac{1}{2}\times 4\sqrt{3} \times 4[/tex]

Area of the triangle ABC =  [tex]8\sqrt{3}[/tex] cm²

Area of the shaded region

                   = Area of the semi-circle – Area of the triangle ABC

                   = [tex]$8\pi \ \text{cm}^2-8\sqrt{3}\ \text{cm}^2[/tex]

                   = [tex]$8(\pi \ -\sqrt{3})\ \text{cm}^2[/tex]

Hence the area of the shaded region is [tex]$8(\pi \ -\sqrt{3})\ \text{cm}^2[/tex].