The sample standard deviation of the given 9 term series is 5.099
Step-by-step explanation:
step 1 : arrange the given series in increasing order so 4,6,7,8,11,13,15,16,19.
step 2 : find the mean of the series (i.e) add the numbers and divide the total with the n ( number of terms given ).[tex]\frac{4+6+7+8+11+13+15+16+19}{9}[/tex]= 11
step 3 : now subtract the mean with the given number and add the answers by squaring them so [tex](4-11)^{2}[/tex] + [tex](6-11)^{2}[/tex] + [tex](7-11)^{2}[/tex] + [tex](8-11)^{2}[/tex] + [tex](11-11)^{2}[/tex] + [tex](11-13)^{2}[/tex] + [tex](11-15)^{2}[/tex] + [tex](11-16)^{2}[/tex] + [tex](11-19)^{2}[/tex] = 208
step 4 : Now divide the obtained answer by the (n-1) . so [tex]\frac{208}{8}[/tex] = 26
step 5 : Take the square root of the answer[tex]\sqrt{26}[/tex] = 5.099
step 6 : Thus we found the sample standard deviation.