Respuesta :

Answer and Step-by-step explanation:

[tex]Good~Day![/tex]

[tex]Let's~solve`your~equation![/tex]

We know that:

→  [tex]\frac{4}{5}~mi~and~\frac{1}{20}~mi~per~hour.[/tex]

→ [tex]So,~multiply~\frac{4}{5}~by~a~number~that~will~give~your~denominator~(5)~to~20[/tex]

→ [tex]5[/tex] × [tex]4~is~20,~multiply~\frac{4}{5}~by~4.[/tex]

→ [tex]\frac{16}{20}~miles,~or~16~hours,~since~\frac{1}{20}~mi~is~made~per~hour.[/tex]

⇒ [tex]So~16~hours~is~your~answer![/tex]

Answer:

16 hours

Step-by-step explanation:

Total length of the road that needs to be repaved = [tex]\[\frac{4}{5}\] [/tex] miles

Total length of the road which is repaved by the road crew per hour = [tex]\[\frac{1}{20}\] [/tex] miles

Total number of hours required to repave the whole road = (Length of the road  to be repaved)/(Length of the road repaved by the crew per hour)

=[tex]\[\frac{4}{5} \div \frac{1}{20}\] [/tex]

=[tex]\[\frac{4}{5} * 20\] [/tex]

= 16 hours