Respuesta :

Answer:

yw

Step-by-step explanation:

Ver imagen kpcode3
Ver imagen kpcode3

The statements and reasons to prove that [tex]\overline{DE}[/tex] [tex]\cong[/tex] [tex]\overline{CE}[/tex] are presented as

follows;

Statements [tex]{}[/tex]                              Reasons

1. [tex]\overline{AD}[/tex] [tex]\cong[/tex] [tex]\overline{BC}[/tex] [tex]{}[/tex]                              1.  Given

2. ∠BCD ≅ ∠ADC [tex]{}[/tex]                   2. Given

3. [tex]\overline{DC}[/tex] [tex]\cong[/tex] [tex]\overline{DC}[/tex] [tex]{}[/tex]                            3.  Reflective property

4. ΔADC ≅ ΔBCD [tex]{}[/tex]                   4. By SAS rule of congruency

5. ∠DAE ≅ ∠CBE [tex]{}[/tex]                   5. By CPCTC

6. ∠AED ≅ ∠BEC [tex]{}[/tex]                   6. By vertical angles theorem

7. ΔAED ≅ ΔBEC [tex]{}[/tex]                   7. By SAA rule of congruency

8. [tex]\overline{DE}[/tex] [tex]\cong[/tex] [tex]\overline{CE}[/tex] [tex]{}[/tex]  [tex]{}[/tex]                         8.  By CPCTC

The abbreviations are;

SAS; Side-Angle-Side rule of congruency, which states that two triangles

are congruent if their corresponding two sides and included angle are

congruent.

CPCTC; Congruent Parts of Congruent Triangle are Congruent, which is

the rule that if two figures are congruent, their corresponding parts are

also congruent.

SAA; Side-Angle-Angle rule of congruency which states that two triangles

are congruent if they each have two angles and a corresponding adjacent

side that are equal.

Learn more here:

https://brainly.com/question/20683070