Respuesta :

[tex]5N^2=2^2 \times 5^{7} \times x^{8}[/tex]

Solution:

Given a number N in product of its prime factors.

[tex]N=2 \times 5^{3} \times x^{4}[/tex]

Now, express [tex]5 N^{2}[/tex] as a product of prime factors in index form.

Substitute [tex]2 \times 5^{3} \times x^{4}[/tex] in place of N.

[tex]5N^2=5\times(2 \times 5^{3} \times x^{4})^2[/tex]

Use exponential rule: [tex]\left(a^{m}\right)^{n}=a^{m n}[/tex]

Multiply the power 2 into the powers of factors of every number in the bracket.

[tex]5N^2=5\times2^2 \times 5^{6} \times x^{8}[/tex]

Arrange like terms together.

[tex]5N^2=2^2 \times 5\times 5^{6} \times x^{8}[/tex]

Use exponential rule: [tex]a^{m} \times a^{n}=a^{m+n}[/tex]

[tex]5N^2=2^2 \times 5^{1+6} \times x^{8}[/tex]

[tex]5N^2=2^2 \times 5^{7} \times x^{8}[/tex]

Hence [tex]5N^2=2^2 \times 5^{7} \times x^{8}[/tex].