PLEASE HELP ASAP!!!
Which equation is equivalent to 16 Superscript 2 p Baseline = 32 Superscript p + 3? 8 Superscript 4 p Baseline = 8 Superscript 4 p + 3 8 Superscript 4 p Baseline = 8 Superscript 4 p + 12 2 Superscript 8 p Baseline = 2 Superscript 5 p + 15 2 Superscript 8 p Baseline = 2 Superscript 5 p + 3

Respuesta :

Question: Which equation is equivalent to [tex]16^{2 p}=32^{p+3}?[/tex]

Option A: [tex]8^{4 p}=8^{4 p+3}[/tex]

Option B: [tex]8^{4 p}=8^{4 p+12}[/tex]

Option C: [tex]2^{8 p}=2^{5 p+15}[/tex]

Option D: [tex]2^{8 p}=2^{5 p+3}[/tex]

Answer:

Option C: [tex]2^{8 p}=2^{5 p+15}[/tex]

Solution:

Given expression: [tex]16^{2 p}=32^{p+3}[/tex]

Convert 16 to the base 2 and 32 to the base 2.

[tex](2^4)^{2 p}=(2^5)^{p+3}[/tex]

Using exponential rule: [tex]\left(a^{b}\right)^{c}=a^{b c}[/tex]

[tex]2^{8p}=2^{5p+15}[/tex]

Using the rule, [tex]\text { If } d^{f(x)}=d^{g(x)}, \text { then } f(x)=g(x)[/tex]

8p = 5p + 15

3p = 15

p = 5

Substitute p = 5 in given expression, we get

[tex]16^{10}=32^{8}\ \ \ \ \ \ \ \ \ \Rightarrow 1099511627776=1099511627776[/tex]

To find the equivalent expression to the given expression:

Option A: [tex]8^{4 p}=8^{4 p+3}[/tex]

Using the rule, [tex]\text { If } d^{f(x)}=d^{g(x)}, \text { then } f(x)=g(x)[/tex]

⇒ 4p = 4p + 3

⇒ 0p = 3

No solution for p, so it is not equivalent to the given expression.

Option B: [tex]8^{4 p}=8^{4 p+12}[/tex]

Using the rule, [tex]\text { If } d^{f(x)}=d^{g(x)}, \text { then } f(x)=g(x)[/tex]

⇒ 4p = 4p + 12

⇒ 0p = 12

No solution for p, so it is not equivalent to the given expression.

Option C: [tex]2^{8 p}=2^{5 p+15}[/tex]

Using the rule, [tex]\text { If } d^{f(x)}=d^{g(x)}, \text { then } f(x)=g(x)[/tex]

⇒ 8p = 5p + 15

⇒ 3p = 15

p = 5

Substitute p = 5 in [tex]2^{8 p}=2^{5 p+15}[/tex], we get

[tex]2^{40}=2^{40}\ \ \ \ \ \ \ \ \ \Rightarrow 1099511627776=1099511627776[/tex]

It is equivalent to the given expression.

Option D: [tex]2^{8 p}=2^{5 p+3}[/tex]

Using the rule, [tex]\text { If } d^{f(x)}=d^{g(x)}, \text { then } f(x)=g(x)[/tex]

⇒ 8p = 5p + 3

⇒ 3p = 3

⇒ p = 1

Substitute p = 1 in [tex]2^{8 p}=2^{5 p+3}[/tex], we get

[tex]2^{8}=2^{8}\ \ \ \ \ \ \ \ \ \Rightarrow 256=256[/tex]

It is not equivalent to the given expression.

Hence Option C is the correct answer.

Answer:

Which equation is equivalent to [tex]16^{2p} = 32^{p+3}[/tex] ?

a.) [tex]8^{4p} = 8^{4p+3}[/tex]

b.) [tex]8^{4p} = 8^{4p+12}[/tex]

c.) [tex]2^{8p} = 2^{5p+15}[/tex] (Answer)

d.) [tex]2^{8p} = 2^{5p+3}[/tex]

Step-by-step explanation:

Edge 2021-2022 :)