Answer:
The average rate of change of the function is 63.
Step-by-step explanation:
[tex]\frac{f(b)-f(a)}{b-a}[/tex]
where, b= upper limit
a= lower limit
f(4)= 5 - 3* [tex]4^{3}[/tex]
= - 187
f(1) = 5 - 3* [tex]1^{3}[/tex]
= 2
Average rate of change is: [tex]\frac{f(b)-f(a)}{b-a}[/tex]
= [tex]\frac{-187-2}{4-1}[/tex]
= -63