A person standing at the edge of a cliff throws a rock upward from a height of 180ft above ground level with an initial velocity of 64ft/s. Calculate the velocity of the rock when it is exactly 48ft above the person’s hand. Separate multiple answers with a comma. (Hint: Use h(t)=−16t2+64t+180 as the position function, where h is in feet, t in seconds. Ignore air resistance.)

Respuesta :

Answer: 8.73 ft/s

Step-by-step explanation:

We have the following equation that models the motion of the rock:

[tex]h(t)=-16t^{2}+64t+180[/tex]

Where [tex]h(t)[/tex] is the height of the rock at a time [tex]t[/tex].

Now, if  [tex]h(t)=48 ft[/tex] we can find [tex]t[/tex] and then the velocity of the rock at that height:

[tex]48=-16t^{2}+64t+180[/tex]

Rearranging the equation:

[tex]-16t^{2}+64t+132=0[/tex]

Multiplying the equation by -1:

[tex]16t^{2}-64t-132=0[/tex]

Solving with the quadratic formula [tex]t=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}[/tex]  , where [tex]a=16[/tex], [tex]b=-64[/tex], [tex]c=-132[/tex] .

[tex]t=\frac{-(-64)\pm\sqrt{(-64)^{2}-4(16)(-132)}}{2(16)}[/tex]

Choosing the positive result of the equation:

[tex]t=5.5 s[/tex]  

Since velocity [tex]V[/tex] is defined as the traveled distance [tex]h(t)[/tex] in a given time [tex]t[/tex], we have:

[tex]V=\frac{h(t)}{t}[/tex]

[tex]V=\frac{48 ft}{5.5 s}[/tex]

[tex]V=8.727 ft/s \approx 8.73 ft/s[/tex] This is the velocity of the rock at the height of 48 feet